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Abstract Protein prenylation, adding either the 15-carbon isoprenoid farnesyl or the 20-carbon isopren- 
oid geranylgeranyl to cysteine residuek) at or near the C-termini of proteins, is a recently identified 
post-translational modification that localizes some proteins to a membrane compartment. One of the 
most intensely studied prenylated proteins is Ras, a low molecular weight GTP-binding protein that 
plays an important role in the regulation of cell proliferation. Proteins encoded by rus genes with onco- 
genic mutations are capable of transforming cells in culture. Such mutated ras genes are frequently 
found in a wide variety of human tumors. Localization of the Ras oncoprotein to the cytoplasmic face 
of the plasma membrane via farnesylation is essential for efficient cell transforming ability. Thus, inhibi- 
tion of the Ras farnesylation reaction is a possible anti-cancer strategy. 

Several strategies have been employed to inhibit Ras farnesylation, including inhibition of isoprenoid 
biosynthesis and inhibition of the enzyme which catalyzes the farnesylation reaction, farnesyl-protein 
transferase (FPTase). Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate limiting 
enzyme in isoprenoid biosynthesis, inhibit Ras farnesylation and block the growth of rus-transformed 
cells. However, antiproliferative effects do not result from specific inhibition of Ras farnesylation; they 
are also observed in cells transformed by ruf, which is independent of Ras farnesylation. A more specific 
approach to inhibiting Ras farnesylation is to inhibit FPTase. Using random screening of natural pro- 
ducts and a rational design approach, a variety of compounds that specifically inhibit FPTase have been 
isolated. Several of these compounds were found to block the farnesylation of Ras proteins in cell 
culture and were able to block the anchorage-independent growth of rus-transformed cells and human 
tumor cell lines. FPTase inhibitors also blocked the morphologic alteration associated with ras-induced 
transformation of mammalian cells. In contrast, these compounds did not affect the growth or morphol- 
ogy of cells transformed by the ruf or mos oncogenes, which do not require farnesylation to achieve 
biological activity. Furthermore, these compounds suppressed the growth of tumors arising from yas- 
transformed cells in nude mice in the absence of systemic toxicity. Control tumors formed by ruf- or mos- 
transformed cells were not affected by these compounds. These studies suggest that FPTase inhibitors 
might be safe and effective chemotherapeutic agents. 
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Cellular proteins terminating in a CAAX motif 
can serve as substrates for one of two isoprenyl- 
protein transferases, farnesyl-pro tein transferase 
(FPTase) or geranylgeranyl-protein transferase 

the 
transfer of the 15-carbon isoprenoid, farnesyl, 
from farnesyl diphosphate (WP) to the C-termi- 
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I (GGPTase I) [1,2]. FPTase 



146 Kohl et al. 

nal cysteine residue of proteins in which the X 
residue of the CAAX motif is typically serine or 
methionine. Substrates of FPTase include the Ras 
proteins, the nuclear lamins, the a and sub- 
units of skeletal muscle phosphorylase kinase, 
and several proteins involved in signal transduc- 
tion in the visual system [2,31. GGPTase I cata- 
lyzes the transfer of the 20-carbon isoprenoid, 
geranylgeranyl, from geranylgeranyl diphosphate 
to proteins in which the X residue of the CAAX 
motif is leucine or phenylalanine, including Rac 
and Rho proteins and the y subunits of hetero- 
trimeric G proteins [l]. Prenylation facilitates 
membrane localization of proteins and, for many 
prenylated proteins, is essential for function. 

One of the most intensely studied prenylated 
proteins is the low molecular weight GTP bind- 
ing protein Ras. Ras functions as a molecular 
switch in transducing growth-promoting signals 
from the cell surface to the nucleus, being "on" 
when bound to GTP and "off" when bound to 
GDP. Mutations which abolish the protein's in- 
trinsic GTPase activity result in constitutively 
activated forms of Ras that exhibit cell trans- 
forming activity [4]. Genetic studies have demon- 
strated that the ability of the Ras oncoprotein to 
transform cells is dependent on the post-trans- 
lational addition of farnesyl to the C-terminal 
cysteine [5-81. Thus, inhibitors of Ras farnesyla- 
tion may be useful as chemotherapeutic agents. 

Several strategies have been employed to in- 
hibit the Ras farnesylation reaction, including 
inhibition of isoprenoid biosynthesis and inhibi- 
tion of FPTase (Fig. 1). Inhibitors of the rate- 
limiting enzyme in isoprenoid biosynthesis, 3-hy- 
droxy-3-methylglutaryl coenzyme A reductase, 
such as lovastatin 191, block the post-translational 
modification of Ras and other farnesylated 
proteins by blocking the synthesis of FPP. More- 
over, lovastatin inhibits cell growth at concen- 
trations that parallel those required to inhibit 
protein prenylation. However, the antiprolifera- 
tive effect of lovastatin is likely not due to inhibi- 
tion of Ras farnesylation since cells transformed 
by viral Raf, an oncoprotein whose function is 
not dependent on farnesylation, are similarly 
growth-inhibited [lo]. Rather, the antiprolifera- 
tive effects are probably due to inhibition of syn- 
thesis of other mevalonate derivatives essential 
for cell growth. 

A more direct approach to inhibiting Ras farn- 
esylation is to inhibit FPTase. Inhibitors of the 
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Fig. 1. lsoprenoid biosynthetic pathway. The Xs indicate 
steps in the pathway which are targets for inhibition of pro- 
tein prenylation. FTI, farnesyl-protein transferase inhibitor. 

enzyme have been identified both through 
targeted screens 1111 and rational design based 
on the two substrates of the reaction, FPP and 
the Ras CAAX tetrapeptide [12-161. The C-term- 
inal CAAX tetrapeptide of Ras contains all the 
determinants required for interaction of the pro- 
tein with FPTase [17,18]. While analogs of both 
protein and isoprenoid substrates have proven to 
be potent inhibitors of the enzyme, the most 
significant advances have been made with 
CAAX peptidomimetics. 

One of the more thoroughly characterized 
CAAX peptidomimetics is L-739,749, the methyl 
ester derivative of L-739,750 (Fig. 2). L-739,749 
contains several structural modifications relative 
to the C A M  tetrapeptide CIFh4, a potent, non- 
substrate FPTase inhibitor [191, which are critical 
for in vitro potency and cell activity. Deletion of 
the carbonyl between the first and second and 
second and third residues in L-739,749 confers 
stability against cleavage by aminopep tidases 
present in cells [201. Substitution of an oxygen 
for the nitrogen atom between the second and 
third residues increases the chemical stability of 
L-739,749 relative to less potent compounds in 
this series. Finally, replacement of the carboxyl- 
ate on the C-terminal methionine sulfone (as is 
found in L-739,750) with a methyl ester confers 
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increased cell activity (see below), presumably by 
increasing membrane permeability [20]. Since the 
C-terminal carboxylate is an important deter- 
minant of intrinsic FPTase inhibitory potency [15, 
211, L-739,749 functions as a prodrug, cleaved by 
intracellular esterases to form L-739,750, the 
active form of the compound. 

L-739,750 is a potent and s ecific inhibitor of 

duced Ras protein and 1 nM partially purified 
E .  coli-produced human FPTase [221,50% inhibi- 
tion (1C5,) was observed at 1.8 nM [23]. In 
contrast, L-739,750 inhibited the related GGPTase 
I with an IC,, of 3,000 nM. As expected, the pro- 
drug, L-739,749, was a less potent inhibitor of 
FPTase (1C5, = 240 nM) but maintained its 
specificity for FPTase relative to GGPTase I [23]. 

L-739,749 was a potent inhibitor of FPTase in 
cells. In assays which measure the fraction of 
processed (farnesylated) and unprocessed Ras in 
immunoprecipitates from cells treated with 
L-739,749,50% inhibition was observed between 
0.1 and 1 pM [24]. In contrast, approximately 
10-fold higher concentrations of L-739,750 were 
required to produce the same effect. This obser- 
vation is consistent with the role of L-739,749 as 
a prodrug. 

Inhibition of FPTase in rus-transformed Ratl 
cells by L-739,749 inhibited anchorage-indepen- 
dent growth. Complete inhibition of growth in 
soft agar was achieved with 10 pM L-739,749, 
and partial inhibition with concentrations as low 
as 2.5 pM [231. In contrast, L-739,749 (at concen- 
trations up to 100 pM) had no effect on the an- 
chorage-independent growth of Ratl cells trans- 
formed by v-ruf and v-mos. The Raf and Mos 
oncoproteins do not require farnesylation for bio- 
logical activity and appear to transform cells in- 
dependently of Ras [25-281. This observation 
suggested that the effect of L-739,749 on the YUS- 

transformed cells was not due to general cyto- 
toxicity. In addition, L-739,749 also inhibited the 
anchorage-independent growth of the human 
pancreatic adenocarcinoma cell line, PSN-1 [23]. 
Like human tumors, the PSN-1 cells have mul- 
tiple genetic alterations, including amplified 
activated c-K-rus and c-myc and mutated p53 
genes [291. 

Treatment of rus-transformed cells with a 
single dose of L-739,749 (as low as 1 pM) caused 
the cells to acquire a flat phenotype similar to 
that of the untransformed parental cells [24]. The 
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Fig. 2. Structure of the CAAX tetrapeptide ClFM and the 
farnesyl-protein transferase inhibitors, L-739,749 and 
L-739,750. 

reverted phenotype was detectable within 
18 hours after addition of L-739,749 and per- 
sisted for 8-10 days, at which time the trans- 
formed phenotype began to reappear. In con- 
trast, treatment of ruf-transformed cells with 
L-739,749 at concentrations up to 50 pM had no 
effect on their morphology [24], consistent with 
the compound's lack of effect on the anchor- 
age-independent growth of these cells. 

Most recently, the in vivo efficacy of L-739,749 
has been demonstrated using a nude mouse 
explant model [231. Mice injected subcutaneously 
with rus- (oncogenically mutated human H-, K- 
or N-rus), v-ruf-, or v-mos-transformed cells were 
treated with phosphate-buffered saline (PBS) or 
20 mg L-739,749/kg intraperitoneally once daily 
for 5 days beginning 2 days after injection of the 
cells. The tumors were excised and weighed 5- 
9 days following the last treatment. There was a 
significant decrease in the average weight of all 
the rus-dependent tumors from mice treated with 
L-739,749 relative to those treated with PBS; the 
percentage decrease ranged from 66% for H-rus- 
dependent tumors to 51% for N-rus-dependent 
tumors. In contrast, L-739,749 had no effect on 
the weights of the ruf- or mas-dependent tumors. 
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Fig. 3. Microscopic appearance of H-ras-dependent (B) animals. The arrows indicate mitotic figures. Hema- 
tumors from control (A) and CAAX peptidomimetic-treated toxylin and eosin. Bar = 100 pm. 
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A 10-fold dilution of L-739,749 had no effect on 
the growth of the rus-dependent tumors, indicat- 
ing that the effect of the compound was dose 
dependent. 

Histological examination of tumors from treat- 
ed (with a CAAX peptidomimetic similar in 
potency to L-739,749) and untreated animals re- 
vealed dramatic differences (Fig. 3). Tumors from 
control animals exhibited a high degree of cellu- 
larity and numerous mitotic figures indicative of 
rapid growth. In contrast, tumors from treated 
animals exhibited reduced cellularity and fewer 
mitotic figures. 

In comparison, doxorubicin administered at 
2 mg/kg (the maximally tolerated dose) resulted 
in a 33% decrease in the weight of H-rus-depen- 
dent tumors. While the doxorubicin-treated 
animals showed signs of toxicity, such as weight 
loss, the L-739,749-treated animals appeared 
normal. Gross and microscopic examination of 
rapidly dividing tissues (bone marrow and gas- 
trointestinal tract) and tissues where farnesylated 
proteins are important for normal function 
(retina and skeletal muscle) from L-739,749- 
treated animals revealed no treatment-related 
abnormalities. 

The FPTase inhibitors, exemplified here by 
L-739,749, appear to be effective and safe chemo- 
therapeutics in animal models. While much 
remains to be learned about the mechanism of 
action of these compounds, the current data 
suggests their efficacy against human cancers. 
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